Pythonによる時系列予測

Compass Data Science

Pythonによる時系列予測

1~2日で出荷、新刊の場合、発売日以降のお届けになります

出版社
マイナビ出版
著者名
マルコ・ペイシェイロ , クイープ
価格
4,180円(本体3,800円+税)
発行年月
2023年10月
判型
B5
ISBN
9784839982966

本書は、データサイエンティストの方がPythonによる時系列予測をマスターすることを目的として書かれています。数式を必要最小限に抑え、ステップバイステップで丁寧に説明していきます。本書は4つの部と21の章で構成されています。

第1部は、時系列予測の入門編です。時系列データを定義し、この種のデータを操作するときの特異性(データをシャッフルすることはできないなど)を明らかにします。次にベースラインモデルを組み立てる手順を追い、予測が意味をなさない状況を調べます。
以降の部・章では、予測テクニックを詳しく取り上げ、統計学的モデルや機械学習モデル・ディープラーニングモデルまで、モデルの複雑度を徐々に上げていきます。
第2部では、統計学的モデルを使った予測に焦点を合わせます。
第3部では、ディープラーニングを使った予測を取り上げます。データセットが高次元の非常に大きなものになり、非線形関係が存在するとしたら、予測に最適なのはディープラーニングです。
第4部では、最後に、予測プロセスを大幅に高速化できる自動予測ライブラリProphetを紹介します。自動予測ライブラリはベースラインモデルの役割を果たすことがよくあります。

本書では、現実のさまざまなシナリオに基づく実践的かつ実用的なアプローチに重点を置いています。現実のデータは整理されておらず欠損していることもあるため、そうした課題に立ち向かうための方法も解説します。
各章にはスキルに磨きをかけるための実習が含まれていて、解答は本書のGitHubリポジトリにあります。実践スキルを身につけるためじっくり取り組んでみてください。
上を目指して、時系列のエキスパートになるための好奇心と意欲が湧いてくることを願っています。

Manning Publications「Time Series Forecasting in Python」の翻訳企画

お気に入りカテゴリ

よく利用するジャンルを設定できます。

≫ 設定

カテゴリ

「+」ボタンからジャンル(検索条件)を絞って検索してください。
表示の並び替えができます。

page top