1~2日で出荷、新刊の場合、発売日以降のお届けになります
関数解析の基本を、線形代数や微分積分の復習もしながら学べるように解説。バナッハ空間、ヒルベルト空間、線形作用素の性質を理解することを主軸として、できる限り丁寧な説明を心掛けた。とくに、具体的な例と抽象的な空間とがつながっていない学生が意外に多いと感じ、通常なら「当たり前」として省略されている内容も冗長をいとわず述べた。
本書の大きな特徴のひとつは、関数解析の考え方自体を学ぶには「ルベーグ積分」の知識は必ずしも必要ないと考え、ルベーグ積分を用いる話題を最終章(第7章)にいっさいあと回しにしたことである。第6章までの内容は、ルベーグ積分の知識がない読者でも安心して読むことができる。
第7章では、微分方程式の境界値問題への応用を見据えて、ルベーグ空間とソボレフ空間について解説した。
よく利用するジャンルを設定できます。
「+」ボタンからジャンル(検索条件)を絞って検索してください。
表示の並び替えができます。