1~2日で出荷、新刊の場合、発売日以降のお届けになります
トポロジー(位相幾何学)の考え方は、数学ばかりでなく物理学や生命科学、物質科学、あるいはデータ解析でも必要とされるようになってきています。
結び目の性質を調べることは、典型的なトポロジーの問題であり、目で見てわかるということもあって多様な方法で研究されています。
本書は、大学で学ぶ数学の基本的な事柄を前提知識として、解析、圏論、ホモロジーなどのさまざまな数学を使いながら、結び目について解説します。
基本的な表現法や性質を示すところから始まり、結び目の不変量をいくつか紹介していきます。そして、双曲空間のモデルを解説したうえで、新しい話題である体積予想の理解を目指します。
豊富な図を交えながら、具体的で平易な解説がなされています。
演習問題によって、さらに理解を深めていくことができます。
結び目についてひと通り学びたい方や、3次元の話題に興味のある方に、おすすめの一冊です。
よく利用するジャンルを設定できます。
「+」ボタンからジャンル(検索条件)を絞って検索してください。
表示の並び替えができます。