機械学習アルゴリズムの違いが見てわかる!
「機械学習アルゴリズムは種類が多く、複雑で何をしているのかわかりにくい」と思ったこと、ありませんか?本書は、そのような機械学習アルゴリズムをオールカラーの図を用いて解説した機械学習の入門書です。
いままで複雑でわかりにくかった機械学習アルゴリズムを図解し、わかりやすく解説しています。アルゴリズムごとに項目を立てているので、どのアルゴリズムがどのような仕組みで動いているのか比較をしやすくしています。
これから機械学習を勉強する方だけでなく、実際に機械学習を業務で使用している方にも新しい気付きを得られるのでお勧めの1冊です。
【本書の特徴】
・複雑な機械学習アルゴリズムの仕組みを1冊で学べる
・オールカラーの図をたくさん掲載
・各アルゴリズム毎にScikit-Learnを使用したコードを記載しているので、見るだけでなく試すこともできる
・仕組みだけでなく、実際の使い方や注意点もわかる
【本書で紹介するアルゴリズム】
01 線形回帰
02 正則化
03 ロジスティック回帰
04 サポートベクトルマシン
05 サポートベクトルマシン(カーネル法)
06 ナイーブベイズ
07 ランダムフォレスト
08 ニューラルネットワーク
09 kNN
10 PCA
11 LSA
12 NMF
13 LDA
14 k-means
15 混合ガウス
16 LLE
17 t-SNE
よく利用するジャンルを設定できます。
「+」ボタンからジャンル(検索条件)を絞って検索してください。
表示の並び替えができます。