【本書の特徴】
2015年11月にGoogleがオープンソース化したソフトウェアライブラリ「TensorFlow(テンソルフロー)」は、
多くの開発者に支持され、多企業で採用されています。
本書は、TensorFlowの導入から、高レベルAPIであるKerasを利用した実践的な深層学習モデルまで解説した、
エンジニア向けの入門書です。
第1部の基本編では、深層学習とTensorFlow、Kerasの基礎について解説し、
第2部の応用編では画像処理における応用的なモデルのKerasを使った実装方法を解説します。
特に、第2部では、「ノイズ除去」「自動着色」「超解像」「画風変換」「画像生成」を取り上げています。
TensorFlowやKerasの機能面を押さえつつ、現場で使用できるような実践的な深層学習モデルまでフォローしています。
【対象読者】
深層学習に入門したいエンジニア
第1部 基本編
第1章 機械学習ライブラリTensorFlowとKeras
第2章 開発環境を構築するる
第3章 簡単なサンプルで学ぶTensorFlowの基本
第4章 ニューラルネットワークとKeras
第5章KerasによるCNNの実装
第6章 学習済みモデルの活用
第7章 よく使うKerasの機能
第2部 応用編
第8章 CAEを使ったノイズ除去
第9章 自動着色
第10章 超解像
第11章 画風変換
第12章 画像生成
よく利用するジャンルを設定できます。
「+」ボタンからジャンル(検索条件)を絞って検索してください。
表示の並び替えができます。