1~2日で出荷、新刊の場合、発売日以降のお届けになります
連立1次方程式の解法の工夫から始まった行列は、ベクトルや行列式とともに線形代数へと発展しました。線形代数は、微分・積分と並んで、物理学や工学さらには経済学などできわめて重要な実用数学で、理系や経済学の学生の基礎科目になっています。本書は、この線形代数をできるだけ易しく解説するとともにその応用例として、量子力学との関わりを見てみます。(ブルーバックス・2010年11月刊)
線形代数が得意になる本
必ずマスターしておきたい基礎数学
連立1次方程式の解法の工夫から始まった行列は、ベクトルや行列式とともに線形代数へと発展しました。線形代数は、微分・積分と並んで、物理学や工学さらには経済学などできわめて重要な実用数学で、理系や経済学の学生の基礎科目になっています。本書は、この線形代数をできるだけ易しく解説するとともにその応用例として、量子力学との関わりを見てみます。
線形代数は主に「行列」や「ベクトル」を扱う数学で、行列はもともと連立1次方程式を解く工夫から始まりました。小学生でも解ける連立1次方程式にもかかわらず、敢えてその解き方を一般化することで、「役に立つ数学」の中のたいへん重要な分野へと発展しました。例えば、量子力学や計量経済学を学ぼうとすれば、線形代数の知識は不可欠です。微分・積分と並んで、理系や経済学の学生なら必ず習得しなくてはならない線形代数を、本書は高校数学程度の知識を前提に、わかりやすく解説します。
よく利用するジャンルを設定できます。
「+」ボタンからジャンル(検索条件)を絞って検索してください。
表示の並び替えができます。